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Deployment Optimization 
for Embedded Flight 
Avionics Systems

Software Defense Application
The deployment topology of a distributed system determines 

how software is mapped to hardware. Optimizing the deploy-
ment topology of DoD distributed embedded systems has a 
significant impact on how efficiently the software utilizes the 
hardware. Deployment optimization can also help minimize costs 
by increasing hardware efficiency without requiring changes to 
the software or hardware architecture. This increase in hard-
ware efficiency, in turn, helps reduce fuel consumption, increase 
operational ranges, and decrease cost.

Introduction
Current Trends and Challenges

Several trends are shaping the development of embedded 
flight avionics systems. First, there is a migration away from 
older federated computing architectures where each subsys-
tem occupied a physically separate hardware component to 
integrated computing architectures where multiple software 
applications implementing different capabilities share a common 
set of computing platforms. Second, publish/subscribe based 
messaging systems are increasingly replacing the use of hard-
coded cyclic executives.

These trends are yielding a number of benefits. For example, 
integrated computing architectures create an opportunity for 
system-wide optimization of deployment topologies, which map 
software components and their associated tasks to hardware 
processors as shown in Figure 1.1

Optimized deployment topologies can pack more software 
components onto the hardware, thereby optimizing system pro-
cessor, memory, and I/O utilization [1, 2, 3]. Increasing hardware 
utilization can decrease the total hardware processors that are 
needed, lowering both implementation costs and maintenance 
complexity. Moreover, reducing the required hardware infrastruc-
ture has other positive side effects, such as reducing weight and 
power consumption.
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Abstract. Loosely coupled publish/subscribe messaging systems facili-
tate optimized deployment of software applications to hardware proces-
sors. Intelligent algorithms can be used to refine system deployments to 
reduce system cost and resource requirements, such as memory and 
processor utilization. This article describes how we applied a computer 
assisted deployment optimization tool to reduce the required processors 
and network bandwidth consumption of a legacy flight avionics system.

Open Problems 
Developing computer-assisted methods and tools to deploy 

software to hardware in embedded systems is hard [4, 5] due to 
the number and complexity of constraints that must be addressed.

For example, developers must ensure that each software 
component is provided with sufficient processing time to meet 
any real-time scheduling constraints [6]. Likewise, resource 
constraints (such as total available memory on each processor) 
must also be respected when mapping software components 
to hardware components [6, 7]. Moreover, assigning real-time 
tasks in multi-processor and/or single-processor machines is 
NP-Hard [8], which means that such a large number of potential 
deployments exist that it would take years to investigate all pos-
sible solutions.

Current algorithmic deployment techniques are largely 
based on heuristic bin-packing [8, 9, 10], which represents the 
software tasks as items that take up a set amount of space 
and hardware processors as bins that provide limited space. 
Bin-packing algorithms try to place all the items into as few bins 
as possible without exceeding the space provided by the bin in 
which they are placed. These algorithms use a heuristic, such as 
sorting the items based on size and placing them in the first bin 
they fit in, to reduce the number of solutions that are considered 
and to avoid exhaustive solution space exploration.

Conventional bin-packing deployment techniques take a one-
dimensional view of deployment problems by just focusing on a 
single deployment concern at a time. Example concerns include 
resource constraints, scheduling constraints, or fault-tolerance 
constraints. In production flight avionics systems, however, deploy-
ments must meet combinations of these concerns simultaneously.

Solution Approach: Computer Assisted Deployment 
Optimization

This paper describes and validates a method and tool called 
ScatterD that we developed to perform computer-assisted deploy-
ment optimization for flight avionics systems. The ScatterD model-
driven engineering [11] deployment tool implements the Scatter 
Deployment Algorithm, which combines heuristic bin-packing with 
optimization algorithms, such as genetic algorithms [12] or particle 
swarm optimization techniques [13] that use evolutionary or bird-
flocking behavior to perform blackbox optimization. This article 

Figure 1. Flight Avionics Deployment Topology  
(© 2010 by Vanderbilt and Lockheed Martin)
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shows how flight avionics system developers have used ScatterD 
to automate the reduction of processors and network bandwidth 
in complex embedded system deployments.

The remainder of this article is organized as follows: Section 4 
outlines a flight avionics deployment case study we use to moti-
vate the challenges and solutions throughout the paper; Section 
5 describes the challenges faced by developers when attempt-
ing to optimize a representative flight avionics deployment 
topology; Section 6 discusses the ScatterD tool for deployment 
optimization; Section 7 provides empirical results demonstrat-
ing the reductions in hardware footprint and network bandwidth 
consumption that ScatterD can produce; and Section 8 presents 
concluding remarks.

Section 4: 
Modern Embedded Flight Avionics Systems: 
A Case Study

Over the past 20 years, flight avionics systems have become 
increasingly sophisticated. Modern aircraft now depend heav-
ily on software executing atop a complex embedded network 
for higher-level capabilities, such as more sophisticated flight 
control and advanced mission computing functions. To accom-
modate the increased amount of software required, avionics sys-
tems have moved from older federated computing architectures 
to integrated computing architectures that combine multiple 
software applications together on a single computing platform 
containing many software components.

The class of flight avionics system targeted by our work is a 
networked parallel message-passing architecture containing 
many computing nodes. At the individual node level, ARINC 
653-compliant time and space partitioning separates the soft-
ware applications into sets with compatible safety and security 
requirements. Inside a given time partition, the applications run 
within a hard real-time deadline scheduler that executes the ap-
plications at a variety of harmonic periods.

The integrated computing architecture shown in Figure 2 has 
benefits and challenges. Key benefits include better optimiza-
tion of hardware resources and increased flexibility, which result 
in a smaller hardware footprint, lower energy use, decreased 
weight, and enhanced ability to add new software to the aircraft 
without updating the hardware. The key challenge, however, is 
increased system integration complexity. In particular, while the 
homogeneity of processors gives system designers a great deal 
of freedom allocating software applications to computing nodes, 
optimizing this allocation involves simultaneously balancing 
multiple competing resource demands.

For example, even if the processor demands of a pair of 
applications would allow them to share a platform, their respec-
tive I/O loads may be such that worst-case arrival rates would 
saturate the network bandwidth flowing into a single node. This 
problem is complicated for single-core processors used in current 
integrated computing architectures. Moreover, this problem is 
being exacerbated with the adoption and fielding of multi-core 
processors, where competition for shared resources expands 
to include internal buses, cache memory contents, and memory 

access bandwidth. Artifacts complete with data describing the 
computational interactions and requirements of this system were 
provided by the Systems and Software Producibility Collabora-
tion and Experimentation Environment (SPRUCE) web portal 
<http://www.sprucecommunity.org>. The SPRUCE web portal 
allows industry partners to create challenge problems complete 
with artifacts comprised of real data. These problems can then be 
paired with members of the research community that maximize 
the potential of discovering new, innovative solutions.

Section 5: 
Deployment Optimization Challenges

This section describes the challenges facing developers when 
attempting to create a deployment topology for a flight avion-
ics system. The discussion below assumes a networked parallel 
message-passing architecture (such as the one described in 
Section 4). 

The goal is to minimize the number of processors and the 
total network bandwidth resulting from communication between 
software tasks.

5.1 Challenge 1: Satisfying Ratemonotonic Scheduling 
Constraints Efficiently

In real-time systems, such as the embedded flight avionics 
case study from Section 4, either fixed priority scheduling algo-
rithms, such as ratemonotonic scheduling, or dynamic priority 
scheduling algorithms, such as earliest deadline-first, control 
the execution ordering of individual tasks on the processors. 
The deployment topology must ensure that the set of software 
components allocated to each processor can be scheduled and 
will not miss real-time deadlines. Finding a deployment topology 
for a series of software components that ensures the ability to 
schedule all tasks is called “multiprocessor scheduling” and is 
NP-Hard [8].

A variety of algorithms, such as bin-packing algorithm varia-
tions, have been created to solve the multiprocessor scheduling 
problem. A key limitation of applying these algorithms to optimize 
deployments is that bin-packing does not allow developers to 
specify which deployment characteristics to optimize. For example, 
bin-packing does not allow developers to specify an objective 
function based on the overall network bandwidth consumed by a 
deployment. We describe how ScatterD ensures scheduling con-
straints are met in Section 6.1 and allows for complex objective 
functions, such as network bandwidth reduction. 

5.2 Challenge 2: Reducing the Complexity of Memory, 
Cost, and Other Resource Constraints

Processor execution time is not the only type of resource that 
must be managed while searching for a deployment topology. 
Hardware nodes often have other limited but critical resources, 
such as main memory or core cache, necessary for the set of 
software components it supports to function. Developers must 
ensure that the components deployed to a processor do not 
consume more resources than are present.

If each processor does not provide a sufficient amount of 

http://www.sprucecommunity.org
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resources to support all tasks on the processor, a task will not 
execute properly, resulting in a failure. Moreover, since each 
processor used by a deployment has a financial cost associ-
ated with it, developers may need to adhere to a global budget, 
as well as scheduling constraints. We describe how ScatterD 
ensures that resource constraints are satisfied in Section 6.2.

5.3 Challenge 3: Satisfying Complex Dynamic Network 
Resource and Topology Constraints

Embedded flight avionics systems must often ensure that 
not only processor resource limitations are adhered to, but also 
network resources (such as bandwidth) are not over consumed. 
The consumption of network resources is determined by the 
number of interconnected components that are not collocated 
on the same processor. For example, if two components are 
collocated on the same processor, they do not consume any 
network bandwidth.

Adding the consideration of network resources to deploy-
ment substantially increases the complexity of finding a 
software-to-hardware deployment topology mapping that meets 
requirements. The impact of the component’s deployment on 
the network, however, cannot be calculated in isolation of the 
other components. The impact is determined by finding all other 
components that it communicates with, determining if they are 
collocated, and then calculating the bandwidth consumed by the 
interactions with those that are not collocated. We describe how 
ScatterD helps minimize the bandwidth required by a system 
deployment in Section 6.3.

Section 6:
ScatterD: A Deployment Optimization Tool to Minimize 
Bandwidth and Processor Resources

Heuristic bin-packing algorithms work well for multiproces-
sor scheduling and resource allocation. As discussed in Section 
5, however, heuristic bin-packing is not effective for optimizing 
designs for certain system-wide properties, such as network 
bandwidth consumption, and hardware/software cost. Meta-
heuristic algorithms [12, 13] are a promising approach to opti-
mize system-wide properties that are not easily optimized with 
conventional bin-packing algorithms. These types of algorithms 
evolve a set of potential designs over a series of iterations using 
techniques, such as simulated evolution or bird flocking. At the 
end of the iterations, the best solution(s) that evolved out from 
the group is output as the result.

Although metaheuristic algorithms are powerful, they have 
historically been hard to apply to large-scale production embed-
ded systems since they typically perform poorly on problems 
that are highly constrained and have few correct solutions. 
Applying simulated evolution and bird-flocking behaviors for 
these types of problems tends to randomly mutate designs in 
ways that violate constraints. For example, using an evolutionary 
process to splice together two deployment topologies is likely to 
yield a new topology that is not real-time schedulable.

Below we explain how ScatterD integrates the ability of 
heuristic bin-packing algorithms to generate correct solutions to 
scheduling and resource constraints with the ability of meta-
heuristic algorithms to flexibly minimize network bandwidth and 
processor utilization and address the challenges in Section 5.

Figure 2. An Integrated 
Computing Architecture for 
Embedded Flight Avionics
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6.1 Satisfying Real-time Scheduling Constraints  
with ScatterD

ScatterD ensures that the numerous deployment constraints 
(such as the real-time scheduling constraints described in 
Challenge 1 from Section 5.1) are satisfied by using heuristic 
bin-packing to allocate software tasks to processors. Conven-
tional bin-packing algorithms for multiprocessor scheduling 
are designed to take as input a series of items (e.g., tasks or 
software components), the set of resources consumed by each 
item (e.g., processor and memory), and the set of bins (e.g., pro-
cessors) and their capacities. The algorithm outputs an assign-
ment of items to bins (e.g., a mapping of software components 
to processors).

ScatterD ensures that all tasks of the flight avionics system 
discussed in Section 4 can be scheduled by using response-
time analysis. The response time resulting from allocating a 
software task of the avionics system to a processor is analyzed 
to determine if a software component can be scheduled on a 
given processor before allocating its associated item to a bin. If 
the response time is fast enough to meet the real-time dead-
lines of the software task, the software task can be allocated to 
the processor.

6.2 Satisfying Resource Constraints with ScatterD
To ensure that other resource constraints (such as memory 

requirements described in Challenge 2 from Section 5.2) of each 
software task are met, we specify a capacity for each bin that is 
defined by the amount of each computational resource provided 
by the corresponding processor in the avionics hardware platform. 
Similarly, the resource demands of each avionics software task 
define the resource consumption of each item. Before an item 
can be placed in a bin, ScatterD verifies that the total consump-
tion of each resource utilized by the corresponding avionics 
software component and software components already placed on 
the processor does not exceed the resources provided.

6.3 Minimizing Network Bandwidth and Processor  
Utilization with ScatterD

To address deployment optimization issues (such as those 
raised in Challenge 3 from Section 5.3), ScatterD uses  
heuristic bin-packing to ensure that all tasks can be  
scheduled and resource constraints are met. If the heuristics 
are not altered, bin-packing will always yield the same  
solution for a given set of software tasks and processors.  
The number of processors utilized and the network bandwidth 
requirements will therefore not change from one execution 
of the bin-packing algorithm to another. In a vast deployment 
solution space associated with a large-scale flight avionics 
system, however, there may be many other deployments  
that substantially reduce the number of processors and net-
work bandwidth required, while also satisfying all  
design constraints.

To search for avionics deployment topologies with minimal 
processor and bandwidth requirements—while still ensuring  
that other design constraints are met—ScatterD uses  
metaheuristic algorithms to seed the bin-packing algorithm. 
In particular, metaheuristic algorithms are used to search the 
deployment space and select a subset of the avionics software 
tasks that must be packed prior to the rest of the software 
tasks. By forcing an altered bin-packing order, new deployments 
with different bandwidth and processor requirements are  
generated. Since bin-packing is still the driving force behind  
allocating software tasks, design constraints have a higher  
probability of being satisfied. By using metaheuristic algorithms 
to search the design space—and then using bin-packing to 
allocate software tasks to processors—ScatterD can generate 
deployments that meet all design constraints while also  
minimizing network bandwidth consumption and reducing  
the number of required processors in the avionics platform,  
as shown in Figure 3.

Figure 3. ScatterD Deployment Optimization Process
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Section 7: 
Empirical Results

This section presents the results of configuring the ScatterD 
tool to combine two metaheuristic algorithms (particle swarm 
optimization and a genetic algorithm) with bin-packing to opti-
mize the deployment of the embedded flight avionics system de-
scribed in Section 4. We applied these techniques to determine 
if (1) a deployment exists that increases processor utilization to 
the extent that legacy processors could be removed; and (2) the 
overall network bandwidth requirements of the deployment were 
reduced due to collocating communicating software tasks on a 
common processor. 

The first experiment examined applying ScatterD to minimize 
the number of processors in the legacy flight avionics system 
deployment described in Section 4. This system originally 
required 14 processors to support all necessary software tasks. 
Applying ScatterD with particle swarm optimization techniques 
and genetic algorithms resulted in increased utilization of the 
processors, reducing the number of processors needed to 
deploy the software of the system to eight in both cases. The 
remaining six processors could then be removed from the de-
ployment without affecting system performance, resulting in the 
42.8% reduction shown in Figure 4.

The ScatterD tool was also applied to minimize the bandwidth 
consumed due to communication by software tasks allocated to 
different processors in the legacy avionics system described in 
Section 4. Reducing the bandwidth requirements of the system 
leads to more efficient, faster communication while also reduc-
ing power consumption. The legacy deployment consumed  
1.83 · 1008 bytes of bandwidth. Both versions of the ScatterD 
tool yielded a deployment that reduced bandwidth by  
4.39 · 1007 bytes or 24%, as shown in Figure 4.

While these experiments prove the effectiveness of applying 
ScatterD to legacy system deployments, it is important to note 
that ScatterD can also yield benefits if applied when initially 
designing a new system. If the potential processor utilization and 
network interactions of the software tasks that comprise the 
system are known, then ScatterD can be applied to potentially 
yield a deployment with reduced processor requirements and 
network bandwidth consumption. 

Section 8: 
Concluding Remarks

Optimizing deployment topologies on legacy embedded flight 
avionics systems can yield substantial benefits, such as reducing 
hardware costs and power consumption. The following are a 
summary of the lessons we learned applying our ScatterD tool 
for deployment optimization to a legacy flight avionics system:

• Multiple constraints make deployment planning hard.  
Avionics deployments must adhere to a wide range of strict  
constraints, such as resource, collocation, scheduling, and net-
work bandwidth. Deployment optimization tools must account 
for all these constraints when determining a new deployment.

• A huge deployment space requires intelligent search tech-
niques. The vast majority of potential deployments that could 
be created violate one or more design constraints. Intelligent 

and automated techniques, such as hybrid-heuristic bin-
packing, should therefore be applied to discover valid “near-
optimal” deployments.

• Substantial processor and network bandwidth reductions 
are possible. Applying hybrid-heuristic bin-packing to the flight 
avionics system resulted in a 42.8% processor reduction and a 
24% bandwidth reduction. Our future work is applying hybrid-
heuristic bin-packing to other embedded system deployment 
domains, such as automobiles, multi-core processors, and 
tactical smartphone applications.

• ScatterD can be applied throughout system lifetime. 
Systems may initially include expansion resources for inevi-
table system maintenance and to support new software that 
becomes available during the 20 to 30 year system lifetime. 
These expansion resources can be used to support new soft-
ware that is added to the system overtime. Expansion resourc-
es, however, are finite and may not be necessary for a large 
portion of the system lifecycle leading to increased system 
weight and cost for an underutilized architecture. Therefore it is 
critical that all system resources, such as processor utilization 
and network bandwidth, are minimized so that superfluous 
hardware is limited. ScatterD can determine system deploy-
ments, and minimize network bandwidth consumption and 
processor utilization so that additional resources are present 
to support new software as it becomes available later in the 
system lifecycle. 

The ScatterD tool is available in open-source from the As-
cent Design Studio <http://ascent-design-studio.googlecode.
com>. A document describing the flight avionics system case 
study outlined in Section 4, as well as additional information  
on ScatterD, can be found at the SPRUCE web portal  
<http://www.spruceommunity.org>, which pairs open industry 
challenge problems with cutting-edge methods and tools from 
the research community.

Figure 4. Network Bandwidth and Processor Reduction in 
Optimized Deployment

http://ascent-design-studio.googlecode.com
http://ascent-design-studio.googlecode.com
http://www.spruceommunity.org
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